Séminaire Statistique
organisé par l'équipe Statistique
-
Bertrand Maillot
Modèle additifs de régression pour des processus à temps continu
6 janvier 2009 - 14:15Salle de séminaire 418
-
Celestin Kokonendji
Estimation semi-paramétrique de fonction de masse de probabilité
13 janvier 2009 - 14:15Salle de séminaire 418
On introduira d'abord une méthode d'estimation non-paramétrique d'une fonction de masse de probabilité (f.m.p.) inconnue par des noyaux associés discrets, en particulier triangulaires. Par la suite, on appliquera cette méthode de noyaux (associés) discrets à l'estimation d'une fonction discrète de poids liée à une loi discrète paramétrique de référence ; ce qui conduira à une estimation semi-paramétrique d'une f.m.p. inconnue. Enfin, on procédera à quelques comparaisons entre les deux méthodes : non-paramétrique et semi-paramétrique. -
Sebastien Loustau
Performances statistiques des SVM en classification
20 janvier 2009 - 14:15Salle de séminaire 418
-
Assi N'guessan
Variance-Covariance Matrix estimation in A Meta-Analysis of a multinomial Outcome Using a Linear Mixed Effects Model
27 janvier 2009 - 14:15Salle de séminaire 418
-
Bertrand Michel
Modélisation de la production d'hydrocarbures dans un bassin pétrolier
3 février 2009 - 14:15Salle de séminaire 418
-
Segolen Geffray
Inférence non- et semi-paramétrique dans un contexte d'évènements récurrents en présence d'un évènement terminal et de censure aléatoire droite indépendante
10 février 2009 - 14:15Salle de séminaire 418
Dans un contexte d'évènements récurrents, nous nous intéressons successivement à deux quantités. La fonction de répartition jointe des durées inter-arrivées successives qui fournit des informations pertinentes lorsque peu de récurrences sont attendues. A l'inverse, lorsque de nombreuses récurrences sont attendues, on s'intéresse à la fonction moyenne cumulée qui compte le nombre d'évènements récurrents survenus jusqu'à un instant donné. Dans une première partie, la fonction de répartition jointe des durées inter-arrivées successives est estimée de façon non-paramétrique. Des résultats de consistance et de convergence faible sont établis. Le comportement à distance finie de l'estimateur proposé est évalué par simulations. Enfin, la méthodologie proposée est appliquée sur des données réelles. Dans une seconde partie, la fonction moyenne cumulée est estimée en présence de covariables de façon semi-paramétrique sous l'hypothèse qu'un modèle de régression à direction révélatrice unique est satisfait. Des résultats de consistance et de convergence faible sont établis. -
Julia Dony
An empirical process approach to uniform in bandwidth consistency of kernel-type estimators
17 février 2009 - 14:15Salle de séminaire 418
-
Mohamed Chaouch
Quantiles géométriques et sondage
3 mars 2009 - 14:15Salle de séminaire 418
-
Omar El-Dakkak
Décompositions de Hoeffding pour des suites échangeables à valeurs dans un ensemble fini
10 mars 2009 - 14:15Salle de séminaire 418
-
Anne Ruiz-Gazen
Détection d'observations atypiques et d'observations influentes dans des données géoréférencées
17 mars 2009 - 13:45Salle de séminaire 418
Attention, l'horaire n'est pas habituel -
Jean-Francois Dupuy
Estimation dans un modèle de régression de durées partiellement observé
14 avril 2009 - 16:00Salle de séminaire 418
Attention, il ne s' agit pas de l'heure habituelle -
Celine Helbert
Le krigeage, un métamodèle adapté à la propagation d'incertitude et à l'optimisation des grands codes de calculs. Approche classique et bayésienne
28 avril 2009 - 14:15Salle de séminaire 418
-
Caroline Truntzer
Approche comparative de l'optimisme dans les modèles intégrant des variables clinico-biologiques classiques et des gènes.
5 mai 2009 - 14:15Salle de séminaire 418
Avec l'introduction des biopuces dans le domaine clinique, certains auteurs ont affirmé que les biomarqueurs issus de l'étude du transcriptome avaient de meilleures capacités prédictives que les biomarqueurs clinico-biologiques connus jusqu'à maintenant. Cependant, les deux types de variables sont dans des situations très différentes; si la plupart des biomarqueurs cliniques ont été validés, la phase de sélection est encore pleinement d'actualité pour les biomarqueurs transcriptomiques. L'objectif de ce travail a été de quantifier l'optimisme relatif aux variables transcriptomiques d'une part, et aux clinico-biologiques classiques d'autre part, quand les deux types de variables sont introduits dans un même modèle de survie. Le R² de Kent et O'Quigley a été utilisé à cet effet. Basé sur des simulations, ce travail a permis de montrer comment le processus de sélection introduisait un fort optimisme dans le cas des gènes.
-
David Haziza
Estimation robuste dans les enquêtes : une approche unifiée
19 mai 2009 - 14:15Salle de séminaire 418
-
Esterina Masiello
Estimation de la densité de copule par méthode d'ondelettes
9 juin 2009 - 14:15Salle de séminaire 418
-
Georges Le Calvé
Représentatioins métriques en Analyse des données
23 juin 2009 - 14:15Salle de séminaire 418
-
Daniel Alai
Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method
13 octobre 2009 - 14:00Salle de séminaire 418
-
Vincenzo Esposito Vinzi
A Joint Partial Least Squares Component-based Approach to Structural Equation Modeling and Multi-block Data Analysis
27 octobre 2009 - 14:00Salle de séminaire 418
Partial Least Squares Path Modelling (PLS-PM) is generally meant as a component-based approach to structural equation models and multi-block data analysis that privileges a prediction oriented discovery process to the statistical testing of causal hypotheses. In case of formative relationships in the measurement model between the manifest variables and their corresponding latent ones, PLS-PM estimates the outer weights by means of multiple OLS regressions. These regressions might often yield unstable results in case of strong correlations between manifest variables while being not feasible when the number of observations is smaller than the number of variables or in presence of missing data. An external estimation mode based on PLS regression (PLS-R) may overcome these problems while preserving the formative nature of the measurement model. At the same time, this innovative estimation mode provides new tools for interpreting the components, validating the results and improving the predictions in PLS-PM. PLS-R is also profitably extended to: the internal estimation step of PLS-PM as a generalization of path weighting scheme; the estimation of path coefficients in structural models affected by strongly correlated latent variables or missing scores. Finally, the implementation of PLS regression in the estimation steps of PLS Path Modeling defines a regularized comprehensive PLS approach that yields more stable and robust results while enriching interpretation also in case of non linear relationships. -
Stéphane Loisel
A préciser
10 novembre 2009 - 14:00Salle de séminaire 418
-
Alexandre You
Théorie des Valeurs Extrêmes et modèles à seuil
17 novembre 2009 - 14:00Salle de séminaire 418
-
Wolfgang Nusskern
Comparaison entre le coefficient de concentration et le Hirschman-Herfindahl-Index
24 novembre 2009 - 14:00Salle de séminaire 418