S'abonner à l'agenda
  • Thomas Saigre

    Modèle de réduction d'ordre et analyse de sensibilité pour les simulations de transfert de chaleur de chaleur à l'intérieur du globe oculaire humain

    16 janvier 2024 - 14:00Salle de conférences IRMA

    Le transfert de chaleur dans le globe oculaire humain, est fortement influencé par divers paramètres physiologiques et externes. En particulier, il affecte de manière critique le comportement des fluides dans l'œil et les processus d'administration de médicaments. Cependant, la modélisation nécessite la connaissance de divers paramètres, dont certains peuvent jouer un rôle essentiel dans le développement de pathologies. Bien que certaines données médicales aient été récemment acquises, seuls quelques paramètres et leur variabilité sont connus, tandis que d'autres ne peuvent être directement mesurés. À cette fin, un modèle 3D pour simuler le transfert de chaleur dans dans l’œil humain est développé. Afin d'identifier les principaux facteurs influençant le comportement du transfert de chaleur, il est nécessaire d'étudier l'influence de ces paramètres à travers un processus de quantification d'incertitude qui implique de nombreuses évaluations des modèles. Cependant, ce processus est coûteux. Par conséquent, l'utilisation d'une approche de réduction de modèle s'avère essentielle pour réduire le coût de calcul. Dans cette présentation, nous présenterons la méthode des bases réduites avec bornes d’erreur comme moyen de réduire le modèle sans compromettre la précision. Ce modèle réduit permettra l'utilisation des indices de Sobol, une approche statistique, pour évaluer l'influence des paramètres du modèle sur les résultats.
  • Alena Shilova

    Learning HJB Viscosity Solutions with PINNs

    17 janvier 2024 - 10:30Salle de conférences IRMA

    Despite recent advances in Reinforcement Learning (RL), the Markov Decision Processes are not always the best choice to model complex dynamical systems requiring interactions at high frequency. Being able to work with arbitrary time intervals, Continuous Time Reinforcement Learning (CTRL) is more suitable for those problems. Instead of the Bellman equation operating in discrete time, it is the Hamiltonian Jacobi Bellman (HJB) equation that describes value function evolution in CTRL. Even though the value function is a solution of the HJB equation, it may not be its unique solution. To distinguish the value function from other solutions, it is important to look for the viscosity solutions of the HJB equation. The viscosity solutions constitute a special class of solutions that possess uniqueness and stability properties. This paper proposes a novel approach to approximate the value function by training a Physics Informed Neural Network (PINN) through a specific ε-scheduling iterative process constraining the PINN to converge towards the viscosity solution and shows experimental results with classical control tasks.
  • Marie Billaud-Friess

    Méthode des bases réduites probabiliste pour des problèmes paramétrés

    22 janvier 2024 - 15:00Salle de séminaires 309


    Des variantes probabilistes des méthodes de réduction de modèle ont émergé récemment pour améliorer les performances des approches existantes, aussi bien bien en terme de stabilité que d'efficacité. Dans cet exposé, nous présentons une méthode des bases réduites probabiliste pour l'approximation d'une famille de fonctions paramétrées. Ce type de méthode repose sur algorithme "greedy" (glouton) probabiliste utilisant un estimateur d'erreur sous la forme d'une espérance d'une variable aléatoire paramétrée. En pratique, des algorithmes de type MC ou bandit peuvent être considérés. Ces algorithmes ont été testés pour l'approximation de famille de fonctions paramétrées pour lesquelles nous avons accès uniquement à des évaluations ponctuelles (bruitées). En particulier, nous avons considéré l'approximation de la "variété" des solutions, d' EDP paramétrées, admettant une représentation probabiliste par le biais de la formule de Feynman-Kac.
  • Emmanuel De Bézenac

    Representation Equivalent Neural Operators

    30 janvier 2024 - 14:00Salle de conférences IRMA

    Recently, operator learning, or learning mappings between infinite-dimensional function spaces, has garnered significant attention, notably in relation to learning partial differential equations from data. Conceptually clear when outlined on paper, neural operators necessitate discretization in the transition to computer implementations. This step can compromise their integrity, often causing them to deviate from the underlying operators, with practical consequences.

    This talk introduces a new take on neural operators, with a novel framework, Representation equivalent Neural Operators, designed to deal with the aforementioned issue. At its core is the concept of operator aliasing, which measures inconsistency between neural operators and their discrete representations. These concepts will be introduced and their practical applications will be discussed, introducing a novel a convolutional based neural operator.
  • Nicolas Boullé

    Elliptic PDE learning is provably data-efficient

    13 février 2024 - 14:00Salle de conférences IRMA

    PDE learning is an emerging field at the intersection of machine learning, physics, and mathematics, that aims to discover properties of unknown physical systems from experimental data. Popular techniques exploit the approximation power of deep learning to learn solution operators, which map source terms to solutions of the underlying PDE. Solution operators can then produce surrogate data for data-intensive machine learning approaches such as learning reduced order models for design optimization in engineering and PDE recovery. In most deep learning applications, a large amount of training data is needed, which is often unrealistic in engineering and biology. However, PDE learning is shockingly data-efficient in practice. We provide a theoretical explanation for this behavior by constructing an algorithm that recovers solution operators associated with elliptic PDEs and achieves an exponential convergence rate with respect to the size of the training dataset. The proof technique combines prior knowledge of PDE theory and randomized numerical linear algebra techniques and may lead to practical benefits such as improving dataset and neural network architecture designs.
  • Bruno Lévy

    Fluides et galaxies : quelques applications des théorèmes de Brenier en physique numérique

    20 février 2024 - 14:00Salle de conférences IRMA

    Dans cette présentation, je parlerai des théorèmes de Brenier en transport optimal.

    Ces théorèmes ont la particularité de se traduire particulièrement bien en algorithmes numériques, grâce (entre autres) aux travaux de Benamou, de Mérigot et de Gallouet.

    Je montrerai des applications en dynamique des fluides et en cosmologie.

  • Benjamin Mélinand

    Eaux profondes

    12 mars 2024 - 14:00Salle de conférences IRMA

    J’expliquerai comment on peut dériver et justifier des modèles asymptotiques pour l’équation des vagues dans l’hypothèse d’eaux dites profondes.
  • Juliette Chabassier Et Augustin Ernoult

    Comprendre et prédire les propriétés acoustiques d'instruments de musique du patrimoine : le cas d'une trompette Besson, du musée de la musique de Paris

    19 mars 2024 - 14:00Salle de conférences IRMA

    Dans cet exposé, nous utiliserons des outils d'acoustique, de modélisation et d'analyse numérique afin de mieux comprendre le fonctionnement d'une trompette actuellement conservée au sein du Musée de la Musique à Paris. Nous montrerons comment la simulation directe couplée à une méthode d'inversion permettent de reconstruire de façon non destructive, la forme interne de l'instrument de musique, paramètre prépondérant au son émis. À partir de données tomographiques, une première perce (rayon interne de l'instrument) est reconstruite et permet le calcul de la réponse linéaire de l'instrument. Cette dernière est comparée à des données expérimentales de même nature et un problème inverse permet d'affiner la reconstruction. Ces calculs d'acoustique linéaire sous forme mixte en pression et débit se basent sur une discrétisation en espace par une méthode d'éléments finis non standard dont la convergence repose sur des éléments de preuve originaux. A partir de la perce reconstruite et dont le comportement linéaire est validé expérimentalement, une comparaison sonore est souhaitable. La discrétisation en temps repose sur la garantie d'un bilan de puissance au niveau discret, et s'appuie sur un schéma de Störmer-Verlet dans la partie linéaire du tuyau. Ce dernier est prouvé stable pour une source impulsionnelle, y compris lorsque le pas de temps approche sa plus grande valeur admissible, grâce à des éléments de preuve originaux. Enfin, des sons de trompette sont comparés entre ceux d'un musicien jouant une copie de la trompette réalisée à partir du plan issu de la reconstruction de perce, et ceux d'une simulation sonore de la trompette couplée à un modèle rudimentaire non linéaire d'embouchure. Ce travail a fait l'objet d'une collaboration entre la Cité de la Musique- Philharmonie de Paris, le Centre de Recherche et de Restauration des Musées de France, l'Institut Technique Européen des Métiers de la Musique, le fabricant de trompettes Jérôme Wiss et l'équipe MAKUTU de l'Inria Bordeaux.
  • Louis Garenaux

    Stabilité des fronts monostable pour les lois de bilan scalaires.

    2 avril 2024 - 14:00Salle de conférences IRMA

    Les lois de bilan scalaires sont des équations de réaction-advection qui apparaissent naturellement dans des contextes physiques / biologiques. Elles sont obtenues par un bilan entre deux instants proches de la variation de la quantité d'intérêt. Dans cette présentation, je me concentrerai sur certaines solutions propagées à vitesse constante, qui connectent deux états d'équilibres distincts. En particulier, je discuterai la stabilité de ces solutions appelées des fronts.
  • Fanny Lehmann

    3D wave propagation with Neural Operators

    16 avril 2024 - 14:00A confirmer

    Wave propagation simulations are the core of numerous applications and they have reached a high level of fidelity thanks to a continuous improve in numerical modelling and computational resources. When simulating wave propagation in the Earth’s crust, the properties of the propagation domain are subject to large epistemic uncertainties due to the difficulty of conducting geophysical measurements. However, the computational costs of physics-based simulations in three-dimensional (3D) heterogeneous domains prevent uncertainty analyses via a Monte Carlo-like approach. I introduce a surrogate model based on a Multiple Input Fourier Neural Operator (MIFNO), an extension of the popular Fourier Neural Operator [Li et al, 2021]. Fourier Neural Operators rely on the Fast Fourier Transform to learn the frequential representation of Partial Differential Equations (PDEs). Our MIFNO predicts the solution of the 3D elastic wave equation from the properties of the propagation domain and the initial condition. Its main specificities are: - a factorized architecture that limits the number of parameters and improves the scalability - a depth-to-time conversion that predicts 3D time-dependent variables without a 4D surrogate - an implementation depending on the input representation (structured grids and vectors) I will describe the theoretical foundations of the MIFNO architecture, illustrate its prediction ability and quantify the prediction error. I will also show the benefits of transfer learning to fine-tune the MIFNO on a real earthquake and improve its accuracy. This allows us to quantify uncertainties on the solution of the elastic wave equation.